Evolutionary Genomics of Salmonella enterica Subspecies
نویسندگان
چکیده
ABSTRACT Six subspecies are currently recognized in Salmonella enterica. Subspecies I (subspecies enterica) is responsible for nearly all infections in humans and warm-blooded animals, while five other subspecies are isolated principally from cold-blooded animals. We sequenced 21 phylogenetically diverse strains, including two representatives from each of the previously unsequenced five subspecies and 11 diverse new strains from S. enterica subspecies enterica, to put this species into an evolutionary perspective. The phylogeny of the subspecies was partly obscured by abundant recombination events between lineages and a relatively short period of time within which subspeciation took place. Nevertheless, a variety of different tree-building methods gave congruent evolutionary tree topologies for subspeciation. A total of 285 gene families were identified that were recruited into subspecies enterica, and most of these are of unknown function. At least 2,807 gene families were identified in one or more of the other subspecies that are not found in subspecies I or Salmonella bongori. Among these gene families were 13 new candidate effectors and 7 new candidate fimbrial clusters. A third complete type III secretion system not present in subspecies enterica (I) isolates was found in both strains of subspecies salamae (II). Some gene families had complex taxonomies, such as the type VI secretion systems, which were recruited from four different lineages in five of six subspecies. Analysis of nonsynonymous-to-synonymous substitution rates indicated that the more-recently acquired regions in S. enterica are undergoing faster fixation rates than the rest of the genome. Recently acquired AT-rich regions, which often encode virulence functions, are under ongoing selection to maintain their high AT content. IMPORTANCE We have sequenced 21 new genomes which encompass the phylogenetic diversity of Salmonella, including strains of the previously unsequenced subspecies arizonae, diarizonae, houtenae, salamae, and indica as well as new diverse strains of subspecies enterica. We have deduced possible evolutionary paths traversed by this very important zoonotic pathogen and identified novel putative virulence factors that are not found in subspecies I. Gene families gained at the time of the evolution of subspecies enterica are of particular interest because they include mechanisms by which this subspecies adapted to warm-blooded hosts.
منابع مشابه
Evolutionary genomics of the Salmonella enterica subspecies
Six subspecies are currently recognized in Salmonella enterica. Subspecies I (subspecies enterica) is responsible for nearly all infections in humans and warm-blooded animals, while five other subspecies are isolated principally from coldblooded animals. We sequenced 21 phylogenetically diverse strains, including two representatives from each of the previously unsequenced five subspecies and 11...
متن کاملEvolutionary genomics of Salmonella: gene acquisitions revealed by microarray analysis.
The presence of homologues of Salmonella enterica sv. Typhimurium LT2 genes was assessed in 22 other Salmonella including members of all seven subspecies and Salmonella bongori. Genomes were hybridized to a microarray of over 97% of the 4,596 annotated ORFs in the LT2 genome. A phylogenetic tree based on homologue content, relative to LT2, was largely concordant with previous studies using sequ...
متن کاملPhylogenomic Analysis Identifies Gene Gains That Define Salmonella enterica Subspecies I
Comparative methods for analyzing whole genome sequence (WGS) data enable us to assess the genetic information available for reconstructing the evolutionary history of pathogens. We used the comparative approach to determine diagnostic genes for Salmonella enterica subspecies I. S. enterica subsp. I strains are known to infect warm-blooded organisms regularly while its close relatives tend to i...
متن کاملRevealing the Mosaic Nature of Salmonella Genomes Using Microarrays
The accumulation of whole genome sequences has truly brought forth the strength of microarray technology. Thereby, DNA microarray technologies have gained the ability to generate and provide efficient access to vast genetic information suited not only for comparative genomics, but also for the identification and subclassification of microbes. Furthermore, DNA-microarrays have opened the possibi...
متن کاملDraft Genome Sequence of Multidrug Resistant Salmonella enterica serovar Weltevreden Isolated from Seafood
Salmonella enterica subsp. enterica serovar Weltevereden is the most frequent serovar isolated from Asia. Here, we report a draft genome sequence of multidrug resistant Salmonella Weltevreden 9 isolated from seafood. Whole-genome of this isolate and annotation will help enhance the understanding of this pathogenic multidrug-resistant serovar.
متن کامل